REVIEW ARTICLE
Contemporary perioperative haemodynamic monitoring
,
 
,
 
 
 
More details
Hide details
1
Department of Anesthesiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, China
 
2
Department of Anesthesiology and Critical Care, OLV Ziekenhuis, Aalst, Belgium
 
3
Department of Anesthesiology and Perioperative Medicine, University Hospital Brussels (VUB), Faculty of Medicine and Pharmacy, VUB, Brussels, Belgium
 
 
Publication date: 2019-06-28
 
 
Anaesthesiol Intensive Ther 2019;51(2):147-158
 
KEYWORDS
ABSTRACT
Haemodynamic monitoring is the cornerstone in the optimization of tissue perfusion and the prevention of deteriorating metabolism. Haemodynamic alterations could be summarized in terms of cardiac dysfunction, changes of loading conditions (preload or/and afterload), and patient related issues. This review aims to present the clinical applications of different haemodynamic monitoring techniques, discuss advantages and disadvantages, and provide guidance to help the clinician select those techniques suitable to optimize haemodynamics in individual patients during the perioperative period.
REFERENCES (125)
1.
Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 2012; 114: 640-651. doi: 10.1213/ANE.0b013e318240d6eb.
 
2.
Magder SA. The highs and lows of blood pressure: toward meaningful clinical targets in patients with shock. Crit Care Med 2014; 42: 1241-1251. doi: 10.1097/CCM.0000000000000324.
 
3.
Poelaert J, Schupfer G. Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest 2005; 127: 379-390. doi: 10.1378/chest.127.1.379.
 
4.
Poelaert J. Assessment of loading conditions with cardiac ultrasound. A comprehensive review. Anaesthesiol Intensive Ther 2015; 47: 464-470. doi: 10.5603/AIT.a2015.0068.
 
5.
Monge Garcia MI, Jian Z, Settels JJ, et al. Performance comparison of ventricular and arterial dP/dtmax for assessing left ventricular systolic function during different experimental loading and contractile conditions. Crit Care 2018; 22: 325. doi: 10.1186/s13054-018-2260-1.
 
6.
Kraut JA, Madias NE. Lactic acidosis. N Engl J Med 2014; 371: 2309-2319. doi: 10.1056/NEJMra1309483.
 
7.
Boldt J. Clinical review: Hemodynamic monitoring in the intensive care unit. Crit Care 2002; 6: 52-59. doi: 10.1186/cc1453.
 
8.
Spoelstra-de Man AM, Smorenberg A, Groeneveld AB. Different effects of fluid loading with saline, gelatine, hydroxyethyl starch or albumin solutions on acid-base status in the critically ill. PLoS One 2017; 12: e0174507. doi: 10.1371/journal.pone.0174507.
 
9.
Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med 2011; 184: 514-520. doi: 10.1164/rccm.201010-1584CI.
 
10.
Stucchi R, Poli G, Fumagalli R. Haemodynamic monitoring in ICU. Minerva Anesth 2006; 72: 483-487.
 
11.
Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput 2012; 26: 367-374. doi: 10.1007/s10877-012-9381-x.
 
12.
Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med 2016; 5: 47-56. doi: 10.5492/wjccm.v5.i1.47.
 
13.
Boldt J, Ince C. The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review. Intensive Care Med 2010; 36: 1299-1308. doi: 10.1007/s00134-010-1912-7.
 
14.
Magee G, Zbrozek A. Fluid overload is associated with increases in length of stay and hospital costs: pooled analysis of data from more than 600 US hospitals. Clinical Outcomes Res 2013; 5: 289-296. doi: 10.2147/CEOR.S45873.
 
15.
Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA 2016; 316: 1298-1309. doi: 10.1001/jama. 2016.12310.
 
16.
Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002; 121: 2000-2008. doi: 10.1378/chest.121.6.2000.
 
17.
Cannesson M, Le Manach Y, Hofer CK, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology 2011; 115: 231-241. doi: 10.1097/ALN.0b013e318225b80a.
 
18.
Joosten A, Alexander B, Delaporte A, Lilot M, Rinehart J, Cannesson M. Perioperative goal directed therapy using automated closed-loop fluid management: the future? Anaesthesiol Intensive Ther 2015; 47: 517-523. doi: 10.5603/AIT.a2015.0069.
 
19.
Cherpanath TG, Hirsch A, Geerts BF, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med 2016; 44: 981-991. doi: 10.1097/CCM. 0000000000001556.
 
20.
Georges D, de Courson H, Lanchon R, Sesay M, Nouette-Gaulain K, Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study. Crit Care 2018; 22: 32. doi: 10.1186/s13054-017-1938-0.
 
21.
Biais M, de Courson H, Lanchon R, et al. Mini-fluid chanllenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology 2017; 127: 450-456. doi: 10.1097/ALN. 0000000000001753.
 
22.
Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy: mornitoring and predicting fluid responsiveness. Curr Opin Crit Care 2015; 21: 388-394. doi: 10.1097/MCC.0000000000000240.
 
23.
Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care 2016; 6: 111. doi: 10.1186/s13613-016-0216-7.
 
24.
Bisis M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg 2017; 125: 1889-1895. doi: 10.1213/ANE.0000000000002322.
 
25.
Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge’’ reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 2017; 45: 415-421. doi: 10.1097/CCM.0000000000002183.
 
26.
Convertino VA, Ludwig DA, Cooke WH. Stroke volume and sympathetic responses to lower-body negative pressure reveal new insight into circulatory shock in humans. Auton Neurosci 2004; 111: 127-134. doi: 10.1016/j.autneu.2004.02.007.
 
27.
Rathore A, Singh S, Lamsal R, Taank P, Paul D. Validity of Pulse Pressure Variation (PPV) Compared with Stroke Volume Variation (SVV) in Predicting Fluid Responsiveness. Turk J Anaesthesiol Reanim 2017; 45: 210-217. doi: 10.5152/TJAR.2017.04568.
 
28.
Trifi A, Abdellatif S, Daly F, Nasri R, Touil Y, Ben Lakhal S. Ultrasound stroke volume variation induced by passive leg raising and fluid responsiveness: an observational cohort study. Med Intensiva 2019; 43: 10-17. doi: 10.1016/j.medin.2017.11.002.
 
29.
De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005; 31: 517-523. doi: 10.1007/s00134-005-2586-4.
 
30.
Grassi P, Lo Nigro L, Battaqlia K, Barone M, Testa F, Berlot G. Pulse pressure variation as a predictor of fluid responsiveness in mechanically ventilated patients with spontaneous breathing activity: a pragmatic observation study. HSR Proc Intensive Care Cardiovascular Anesth 2013; 5: 98-109.
 
31.
Yi L, Liu Z, Qiao L, Wan C, Mu D. Does stroke volume variation predict fluid responsiveness in children: A systematic review and meta-analysis. PLoS One 2017; 12: e0177590. doi: doi: 10.1371/journal.pone.0177590.
 
32.
Preisman S, DiSeqni E, Vered Z, Perel A. Left ventricular preload and function during graded haemorrhage and retransfusion in pigs: analysis of arterial pressure waveform and correlation with echocardiography. Br J Anaesth 2002; 88: 716-718. doi: 10.1093/bja/88.5.716.
 
33.
Leung JM, Levine E. Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology 1994; 81: 1102-1109.
 
34.
Vignon P, Repessé X, Bégot E, et al. Comparison of echocardiography indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 2017; 195: 1022-1032. doi: 10.1164/rccm.201604-0844OC.
 
35.
Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care 2012; 16: R188. doi: 10.1186/cc11672.
 
36.
Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 2016; 42: 324-332. doi: 10.1007/s00134-015-4168-4.
 
37.
Magder S. Right Atrial pressure in the critically ill: how to measure, what is the value, what are the limitations? Chest 2017; 151: 908-916. doi: 10.1016/j.chest.2016.10.026.
 
38.
Swenson J, Bull D. Intraoperative diagnosis and treatment of pleural effusion based on transesophageal echocardiographic findings. Anesth Analg 1999; 89: 309-310.
 
39.
Goedje O, Seebauer T, Peyerl M, Pfeiffer U, Reichart B. Hemodynamic mornitoring by double-indicator dilution techenique in patients after orthotopic heart transplantation. Chest 2000; 118: 775-781. doi: 10.1378/chest.118.3.775.
 
40.
Rivers EP, Ander DS, Powell D. Central venous oxygen saturation mornitoring in the critically ill patients. Curr Opin Crit Care 2001; 7: 204-211.
 
41.
Gidwani UK, Goel S. The pulmonary artery cather in 2015: the Swan and the Phoenix. Cardiol Rev 2016; 24: 1-13. doi: 10.1097/CRD. 0000000000000082.
 
42.
Rajaram SS, Desai NK, Kalra A, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2013; 28: CD003408. doi: 10.1002/14651858.CD003408.pub3.
 
43.
Schwann NM, Hillel Z, Hoeft A, et al. Lack of effectiveness of the pulmonary artery catheter in cardiac surgery. Anesth Analg 2011; 113: 994-1002. doi: 10.1213/ANE.0b013e31822c94a8.
 
44.
Litton E, Morgan M. The PiCCO monitor: a review. Anaesth Intensive Care 2012; 40: 393-409. doi: 10.1177/0310057X1204000304.
 
45.
Pinsky MR, Teboul JL. Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care 2005; 11: 235-239.
 
46.
Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 2005; 128: 848-854. doi: 10.1378/chest.128.2.848.
 
47.
Rex S, Brose S, Metzelder S, et al. Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 2004; 93: 782-788. doi: 10.1093/bja/aeh280.
 
48.
Mora B, Ince I, Birkenberg B, et al. Validation of cardiac output measurement with the LiDCO™ pulse contour system in patients with impaired left ventricular function after cardiac surgery. Anaesthesia 2011; 66: 675-681. doi: 10.1111/j.1365-2044.2011.06754.x.
 
49.
Menger J, Mora B, Skhirtladze K, Fischer A, Jan Ankersmit H, Dworschak M. Accuracy of Continuous Cardiac Output Measurement With the LiDCOplus System During Intra-Aortic Counterpulsation After Cardiac Surgery. J Cardiothorac Vasc Anesth 2016; 30: 592-598. doi: 10.1053/j.jvca.2015.09.022.
 
50.
Cecconi M, Dawson D, Casaretti R, Grounds RM, Rhodes A. A prospective study of the accuracy and precision of continous cardiac output monitoring devices as compared to intermittent thermodilution. Minerva Anestesiol 2010; 76: 1010-1017.
 
51.
de Wilde RB, Geerts BF, van den Berg PC, Jansen JR. A comparison of stroke volume variation measured by the LiDCOplus and FloTrac-Vigileo system. Anaesthesia 2009; 64: 1004-1009. doi: 10.1213/ane. 0b013e3181ac6dac.
 
52.
Asamoto M, Orii R, Otsuji M, Bougaki M, Imai Y, Yamada Y. Reliability of cardiac output measurements using LiDCOrapid™ and FloTrac/Vigileo™ across broad ranges of cardiac output values. J Clin Monit Comput 2017; 31: 709-716. doi: 10.1007/s10877-016-9896-7.
 
53.
Hamed MA, Goda AS, Eldein RMS. Comparison of goal-directed haemodynamic optimization using pulmonary artery catheter and autocalibrated arterial pressure waveform analysis Vigileo-FloTrac™ system in on-pump coronary artery bypass graft surgery: a randomized controlled studya. Anesth Essays Res 2018; 12: 517-521. doi: 10.4103/aer.AER_58_18.
 
54.
Biais M, Vidil L, Sarrabay P, Cottenceau V, Revel P, Sztark F. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Critical Care 2009; 13: R195. doi: 10.1186/cc8195.
 
55.
Ganter MT, Alhashemi JA, Al-Shabasy AM, et al. Continuous cardiac output measurement by uncalibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock. J Clin Monit Comput 2016; 30: 13-22. doi: 10.1007/s10877-015-9672-0.
 
56.
Biais M, Nouette-Gaulain K, Roullet S, Quinart A, Revel P, Szatark F. A comparison of stroke volume variation measured by Vigileo/Flo Trac system and aortic Doppler echocardiography. Anesth Analg 2009; 109: 466-469. doi: 10.1213/ane.0b013e3181ac6dac.
 
57.
Skarvan K, Lambert A, Filipovic M, Seeberger M. Reference values for left ventricular function in subjects under general anaesthesia and controlled ventilation assessed by two-dimensional transoesophageal echocardiography. Eur J Anaesthesiol 2001; 18: 713-722.
 
58.
Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 2004; 30: 1734-1739. doi: 10.1007/s00134-004-2361-y.
 
59.
Barbier C, Loubieres Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 2004; 30: 1740-1746. doi: 10.1007/s00134-004-2259-8.
 
60.
Slama M, Masson H, Teboul JL, et al. Respiratory variations of aortic VTI: a new index of hypovolemia and fluid responsiveness. Am J Physiol Heart Circ Physiol 2002; 283: H1729-1733. doi: 10.1152/ajpheart.00308.2002.
 
61.
Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 2001; 119: 867-873. doi: 10.1378/chest.119.3.867.
 
62.
Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 2004; 30: 2060-2066. doi: 10.1007/s00134-004-2430-2.
 
63.
Cioccari L, Baur HR, Berger D, et al. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiaography probe. Crit Care 2013; 17: R121. doi: 10.1186/cc12793.
 
64.
Jorgensen MR, Juhl-Olsen P, Frederiksen CA, Sloth E. Transthoracic echocardiography in the perioperative setting. Curr Opin Anaesthesiol 2016; 29: 46-54. doi: 10.1097/ACO.0000000000000271.
 
65.
Mielnicki W, Dyla A, Zawada T. Utility of transthoracic echocardiography (TTE) in assessing fluid responsiveness in critically ill patients – a challenge for the bedside sonographer. Med Ultrason 2016; 18: 508-514. doi: 10.11152/mu-880.
 
66.
Mercado P, Maizel J, Beyls C, et al. Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care 2017; 21: 136. doi: 10.1186/s13054-017-1737-7.
 
67.
Blanco P, Aguiar FM, Blaivas M. Rapid Ultrasound in Shock (RUSH) Velocity-Time Integral: A Proposal to Expand the RUSH Protocol. J Ultrasound Med 2015; 34: 1691-1700. doi: 10.7863/ultra.15.14.08059.
 
68.
Bou Chebl R, Wuhantu J, Kiblawi S, Carnell J. Bedside echocardiography and passive leg raise as a measure of volume responsiveness in the emergency department. J Ultrasound Med 2019; 38: 1319-1326. doi: 10.1002/jum.14812.
 
69.
Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in haemodynamically unstable patients. Chest 2013; 143: 364-370. doi: 10.1378/chest.12-1274.
 
70.
Szmuk P, Pivalizza E, Warters RD, Ezri T, Gebhard R. An evaluation of the T-Line Tensymeter continuous noninvasive blood pressure device during induced hypotension. Anaesthesia 2008; 63: 307-312. doi: https://doi.org/10.1111/j.1365....
 
71.
Wagner JY, Sarwari H, Schon G, et al. Radial artery applanation tonometry for continuous noninvasive cardiac output measurement: a comparison with intermittent pulmonary artery thermodilution in patients after cardiothoracic surgery. Crit Care Med 2015; 43: 1423-1428. doi: 10.1097/CCM.0000000000000979.
 
72.
Raggi EP, Sakai T. Update on finger-application-type noninvasive continuous haemodynamic monitors (CNAP and ccNexfin): physical principles, validation, and clinical use. Semin Cardiothorac Vasc Anesth 2017; 21: 321-329. doi: 10.1177/1089253217708620.
 
73.
Renner J, Gruenewald M, Hill M, et al. Non-invasive assessment of fluid responsiveness using CNAP™ technology is interchangeable with invasive arterial measurements during major open abdominal surgery. Br J Anesth 2017; 118: 58-67. doi: 10.1093/bja/aew399.
 
74.
Saugel B, Meidert AS, Langwieser N, et al. An autocalibrating algorithm for non-invasive cardiac output determination based on the analysis of an arterial pressure waveform recorded with radial artery applanation tonometry: a proof of concept pilot analysis. J Clin Monit Comput 2014; 28: 357-362. doi: 10.1007/s10877-013-9540-8.
 
75.
Ameloot K, Van De Vijver K, Broch O, et al. Nexfin noninvasive continuous haemodynamic monitoring validation against continuous contour and intermittent transpulmonary thermodilution derived cardiac output in critically ill patients. Scientific World Journal 2013; 2013: 519080. doi: 10.1155/2013/519080.
 
76.
Bubenek-Turconi SI, Craciun M, Miclea I, Perel A. Noninvasive continuous cardiac output by the Nexfin before and after preload modifying maneuvers: a comparison with intermittent thermodilution cardiac output. Anesth Analg 2013; 117: 366-372. doi: 10.1213/ANE.0b013e31829562c3.
 
77.
Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven JG, Lemson J, Pickkers P. Non-inasive measurement of pluse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anesth 2011; 107: 540-545. doi: 10.1093/bja/aer187.
 
78.
Stens J, Oeben J, Van Dusseldorp AA, Boer C. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor. J Clin Monit Comput 2016; 30: 587-594. doi: 10.1007/s10877-015-9759-7.
 
79.
Wagner JY, Grond J, Fortin J, Negulescu I, Schofthaler M, Saugel B. Continuous noninvasive cardiac output determination using the CNAP system: evaluation of a cardiac output algorithm for the analysis of volume clamp method-derived pulse contour. J Clin Monit Comput 2016; 30: 487-493. doi: 10.1007/s10877-015-9744-1.
 
80.
Monnet X, Picard F, Lidzborski E, et al. The estimation of cardiac output by the Nexfin device is poor reliability for tracking the effects of a fluid challenge. Crit Care 2012; 16: R212. doi: 10.1186/cc11846.
 
81.
Taton O, Fagnoul D, De Backer D, Vincent JL. Evaluation of cardiac output in intensive care using a non-invasive arterial pluse contour technique(Nexfin(®) compared with echocardiography. Anesthesia 2013; 68: 917-923. doi: 10.1111/anae.12341.
 
82.
Cannesson M, Desebbe O, Rosamel P, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 2008; 101: 200-206. doi: 10.1093/bja/aen133.
 
83.
Forget P, Lois F, deKock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 2010; 111: 910-914. doi: 10.1213/ANE.0b013e3181eb624f.
 
84.
Joosten A, Raj Lawrence S, Colesnicenco A, et al. Personalized versus protocolized fluid management using noninvasive haemodynamic monitoring (Clearsight System) in patients undergoing moderate-risk abdominal surgery. Anesth Analg 2019; 129: e8-e12. doi: 10.1213/ANE.0000000000003553.
 
85.
Botero M, Kirby D, Lobato EB, Staples ED, Gravenstein N. Measurement of cardiac output before and after cardiopulmonary bypass: comparison among aortic transit-time ultrasound, thermodilution, and non-invasive partial CO2 rebreathing. J Cardiothorac Vasc Anesth 2004; 18: 563-572.
 
86.
Kotake Y, Yamada T, Nagata H, et al. Improved accuracy of cardiac output estimation by the partial CO2 rebreathing method. J Clin Monit Comput 2009; 23: 149-155. doi: 10.1007/s10877-009-9172-1.
 
87.
Ng JM, Chow MY, Ip-Yam PC, Goh MH, Agasthian T. Evaluation of partial carbon dioxide rebreathing cardiac output measurement during thoracic surgery. J Cardiothorac Vasc Anesth 2007; 21: 655-658. doi: 10.1053/j.jvca.2007.01.012.
 
88.
Rocco M, Spadetta G, Morelli A, et al. A comparative evaluation of thermodilution and partial CO2 rebreathing techniques for cardiac output assessment in critically ill patients during assisted ventilation. Intensive Care Med 2004; 30: 82-87.
 
89.
Valiatti JL, Amaral JL. Comparison between cardiac output values measured by thermodilution and partial carbon dioxide rebreathing in patients with acute lung injury. Sao Paulo Med J 2004; 122: 233-238. doi: /S1516-31802004000600002.
 
90.
Sugo Y, Akiyama T, Takeda S, Ishihara H. A non-invasive continuous cardiac output measurement method utilizing ECG and SpO2 pulse wave. Jpn Med Instrum 2005; 75: 63-69. doi: 10.1109/IEMBS.2010.5626343.
 
91.
Yamada T, Tsutsui M, Sugo Y, et al. Multicenter study verifying a method of noninvasive continuous cardiac output measurement using pulse wave transit time: a comparison with intermittent bolus thermodilution cardiac output. Anesth Analg 2012; 115: 82-87. doi: 10.1213/ANE.0b013e31824e2b6c.
 
92.
Smetkin AA, Hussain A, Fot EV, et al. Estimated continuous cardiac output based on pulse wave transit time in off-pump coronary artery bypass grafting: a comparison with transpulmonary thermodilution. J Clin Monit Comput 2017; 31: 361-370. doi: 10.1007/s10877-016-9853-5.
 
93.
Magliocca A, Rezoagli E, Anderson TA, Burns SM, Ichinose F, Chitilian HV. Cardiac output measurements based on the pulse wave transit time and thoracic impedance exhibit limited agreement with thermodilution method during orthotopic liver transplantation. Anesth Analg 2018; 126: 85-92. doi: 10.1213/ANE.0000000000002171.
 
94.
Suzuki T, Suzuki Y, Okuda J, et al. Cardiac output and stroke volume variation measured by the pulse wave transit time method: a comparison with an arterial pressure-based cardiac output system. J Clin Monit Comput 2019; 33: 385-392. doi: 10.1007/s10877-018-0171-y.
 
95.
Biais M, Berthezene R, Petit L, Cottenceau V, Sztark F. Ability of esCCO to track changes in cardiac output. Br J Anaesth 2015; 115: 403-410. doi: 10.1093/bja/aev219.
 
96.
Galarza L, Mercado P, Teboul JL, et al. Estimating the rapid haemodynamic effects of passive leg raising in critically ill patients using bioreactance. Br J Anaesth 2018; 121: 567-573. doi: 10.1016/j.bja.2018.03.013.
 
97.
Koobi T, Kahonen M, Koskinen M, Kaukinen S, Turjanmaa VM. Comparison of bioimpedance and radioisotope methods in the estimation of extracellular water volume before and after coronary artery bypass grafting operation. Clin Physiol 2000; 20: 283-291.
 
98.
Spiess BD, Patel MA, Soltow LO, Wright IH. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth 2001; 15: 567-573. doi: 10.1053/jcan.2001. 26533.
 
99.
Lorne E, Mahjoub Y, Diouf M, et al. Accuracy of impedance cardiography for evaluating trends in cardiac output: acomparison with oesophageal Doppler. Br J Anaesth 2014; 113: 596-602. doi: 10.1093/bja/aeu136.
 
100.
Critchley LA, Calcroft RM, Tan PY, Kew J, Critchley JA. The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill. Intensive Care Med 2000; 26: 679-685.
 
101.
Kamath SA, Drazner MH, Tasissa G, Rogers JG, Stevenson LW, Yancy CW. Correlation of impedance cardiography with invasive haemodynamic measurements in patients with advanced heart failure: the bioimpedance cardiography (BIG) substudy of the evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness (ESCAPE) trial. Am Heart J 2009; 158: 217-223. doi: 10.1016/j.ahj.2009.06.002.
 
102.
Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol 2007; 293: H583-589. doi: 10.1152/ajpheart.00195.2007.
 
103.
Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of Bioreactance vs. pulse contour during lung recruitment maneuvers. Crit Care 2009; 13: R125. doi: 10.1186/cc7981.
 
104.
De Pascale G, Singer M, Brealey D. Comparison of stroke volume measurement between non-invasive bioreactance and esophageal Doppler in patients undergoing major abdominal-pelvic surgery. J Anesth 2017; 31: 545-551. doi: 10.1007/s00540-017-2351-1.
 
105.
Teboul JL, Saugel B, Cecconi M, et al. Less invasive haemodynamic monitoring in critically ill patients. Intensive Care Med 2016; 42: 1350-1359. doi: 10.1007/s00134-016-4375-7.
 
106.
Monge Garcia ML, Guijo Gonzalez P, Gracia Romero M, et al. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med 2015; 41: 1247-1255. doi: 10.1007/s00134-015-3898-7.
 
107.
Garcia ML, Romero MG, Cano AG, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid adinisteration: a validation study. Crit Care 2014; 18: 626. doi: 10.1186/s13054-014-0626-6.
 
108.
Lanchon R, Nouette-Gaulain K, Stecken L, Sesay M, Lefrant JY, Biais M. Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room. Anaesth Crit Care Pain Med 2017; 36: 377-382. doi: 10.1016/j.accpm.2017.05.001.
 
109.
Monge Garcia Ml, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care 2011; 15: R15. doi: 10.1186/cc9420.
 
110.
Cecconi M, Monge Garcia MI, Gracia Romero M, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg 2015; 120: 76-84. doi: 10.1213/ANE.0000000000000442.
 
111.
Schmidt C, Roosens C, Struys M, et al. Contractility in humans after coronary artery surgery. Anesthesiology 1999; 91: 58-70.
 
112.
Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg 2003; 96: 1245-1247.
 
113.
Lanchon R, Nouette-Gaulain K, Stecken L, Sesay M, Lefrant JY, Biais M. Dynamic arterial elastance obtained using arterial signal does not predict an increase in arterial pressure after a volume expansion in the operating room. Anesth Crit Care Pain Med 2017; 36: 377-382. doi: 10.1016/j.accpm.2017.05.001.
 
114.
Monge Garcia MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastanceto predict arterial pressure response to volume loading in preload-dependent patients. Crit Care 2011; 15: R15. doi: 10.1186/cc9420.
 
115.
Heerman JR, Segers P, Roosens CD, Gasthuys F, Verdonck PR, Poelaert JI. Echocardiographic assessment of aortic elastic properties with automated border detection in an ICU: in vivo application of the arctangent Langewouters model. Am J Physiol Heart Circ Physiol 2005; 288: H2504-2511. doi: 10.1152/ajpheart.00368.2004.
 
116.
Vallée F, Le Gall A, Joachim J, et al. Beat-by-beat assessment of cardiac afterload using descending aortic velocity-pressure loop during general anesthesia: a pilot study. J Clin Monit Comput 2018; 32: 23-32. doi: 10.1007/s10877-017-9982-5.
 
117.
Sahlen A, Hamid N, Amanullah MR, et al. Impact of aortic root size on left ventricular afterload and stroke volume. Eur J Appl Physiol 2016; 116: 1355-1365. doi: 10.1007/s00421-016-3392-0.
 
118.
Galderisi M, Lomoriello V, Santoro A, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr 2010; 23: 1190-1198. doi: 10.1016/j.echo.2010.07.010.
 
119.
Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function. J Echocardiogr 2019; 17: 10-16. doi: 10.1007/s12574-018-0405-5.
 
120.
Sharir T, Feldman MD, Haber H, et al. Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 1994; 89: 2045-2053. doi: https://doi.org/10.1161/01.CIR....
 
121.
Fincke R, Hochman JS, Lowe AM, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 2004; 44: 340-348. doi: 10.1016/j.jacc.2004.03.060.
 
122.
Jasaityte R, Claus P, Teske AJ, et al. The slope of the segmental stretch-strain relationship as a noninvasive index of LV inotropy. JACC Cardiovasc Imaging 2013; 6: 419-428. doi: 10.1016/j.jcmg.2012.10.022.
 
123.
Ng PY, Sin WC, Ng AK, Chan WM. Speckle tracking echocardiography in patients with septic shock: a case control study (SPECKSS). Crit Care 2016; 20: 145. doi: 10.1186/s13054-016-1327-0.
 
124.
Wdowiak-Okrojek K, Wejner-Mik P, Kasprzak JD, Lipiec P. Recovery of regional systolic and diastolic myocardial function after acute myocardial infarction evaluated by two dimensional speckle tracking echocardiography. Clin Physiol Funct Imaging 2019; 39: 177-181. doi: 10.1111/cpf.12553.
 
125.
Antoni ML, Mollema SA, Delgado V, et al. Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J 2010; 31: 1640-1647. doi: 10.1093/eurheartj/ehq105.
 
eISSN:1731-2531
ISSN:1642-5758
Journals System - logo
Scroll to top